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ABS TRI! C T 

I n  a Maxwell-fluid description large amplitude e l ec t ros t a t i c  an3 

electromagnetic osc i l la t ions  i n  a cold plasma a r e  and.ped i n  s i tua t ions  where 

the  s p a t i a l  var ia t ions a re  one-dinensional and the ions form a fixed neutral i -  

zing backgrounci. 

following the  electron motion i s  ado2ted, and exact solutior!s obtaiaed tn 
these variables i n  s i tua t ions  where multistrearn flow does not deveiop. 

I n  the e lec t ros ta t ic  zpproximation a Lazrangian description 

'. The '.\-- 

inversion t o  Eulerian coordinaSes i s  carr ied out exp l i c i t l y  f o r  5he par t icu lar  

example of  an i n i t i a l  sinusoidal perturbation i n  density. 

the  dispersive modifications of (weak) thermal e f fec ts  i s  analyzed shoving t h c  

A model describiag 

phase-mixing of (moderately) large am>li%ude i n i t i a l  dis tubanccs.  Aft,er 

suf f ic ien t  time, t he  electron f lu id  becomes s ta t ionary and a low l eve l  of 

e l e c t r i c  f i e l d  remains balancing the force due t o  pressure variations. :Cn 
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addition, fo r  the case of nonlinear e l ec t ros t a t i c  osc i l la t ions  perpendicular 

t o  8 s t a t i c  magnetic f ie ld ,  t he  exact solution i n  Lagrangian va.riables s h m s  

t ha t  f o r  a cold plasma coherent osci l la t ions a t  the  upper hfirid frequeiicy 

a re  maintained indefinitely over the regions of i n i t i a l  excitation. 

Electromagnetic osci l la t ions a re  ccnsidered as developing from 

small i n i t i a l  values on the  background cf the  l a rge -aq l i tude  longitudinal 

osc i l la t ions  already calculated. The resu l t ing  wave equation i s  analjjzed f o r  

several  l imit ing cases. It i s  shmn that f o r  sufficientLy short wavelength:: 

D f  t h e  transverse f i e l d s  there  ex is t s  an i n f i n i t e  number of narrow ranges of 

t h e  wave number i n  which the transverse osc i l la t ions  a re  unstable. 

i s  ult imately l imited by the  magnetic force which was neglected i n  the  des- 

c r ip t ion  of t he  longitudinal notion. 

The groxt3 

Finally, s ta t ionary solutions are studied. I n  the  e l ec t ros t a t i c  

epproximation a very special  class of periodic Bernstein-Greene-Kruskal waves 

without trapped pa r t i c l e s  i s  obtained. Again the  electromgnet ic  solutions 

a re  unstable ( i n  space), the  growth being l imited by t h e  same effect  as i n  

the  the-dependent problem. A simple c lass  of special  s ta t ionary s o h t i o n s  

i s  obtained f o r  the complete problem including a l l  magnetic force terms. 
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1. IIJTRODUCTION 

It i s  the purpose of the present a r t i c l e  t o  consider i n  sone detrril 

t he  problem of large-amplitude e lec t ros ta t ic  and electromagnetic o s c i l l a t i m s  

i n  a cold plasma i n  s i tuat ions where the s p a t i a l  variations a r e  one-dimensiord: 

and the  ions form a fixed neutralizing background. 
1 s t a t i c  problem of Dawson and &ban2 i s  b r i e f ly  formdated i n  Section II-ia! 

introducing Tagrangian variables following the  electron f lu id ,  and the exact 

solutions for  relevant physical  quantit ies a re  obtained i n  those varkbles .  

Throughout the  present paper, analysis i s  r e s t r i c t ed  t o  in i t ia l -va lue  problem 

for  which multi-stream flow does not  develcp. I n  Section I i - (b) ,  a par t icu lar  

example i s  considered i n  which the electron f l u i d  i s  i n i t i a l l y  a t  r e s t ,  and 

the electron denstty has the  form, 

The nonlinear electro- 

n(xo,O) = nO(l+AcoskxO) , (1.1) 

where n 

variables is  carried cut expl ic i t ly  and exact nonlinear expressions for t he  

velocity,  e l ec t r i c  f i e l d ,  and density i n  the  laboratory frame are  obtained, 

The r e l a t ion  between these solutions and the solut ion t o  the  Vlaso-r equation 

with appropriate (cold) i n i t i a l  conditions is  b r i e f l y  6iscusse2, 

i s  the uniform ion background density. The inversion t o  Euler im 
0 

Various extensions of the e l ec t ros t a t i c  problem, ar,d t h e  inc lmiw.  

of electromagnetic e f fec ts ,  a re  considered i n  Sections I11 and IV, respcc-bfT:* 

I n  Section 111-(a) the  analysis  of 11-(a) i s  extended t o  describe large- ' 

amplitude e lec t ros ta t ic  osci l la t ions perpendicular t o  a s t a t i c  magnetic f i e l d ,  

and the  exact solution i s  obtained ir, Lagrangian variables. In t h i s  case, 

coherent osc i l la t ions  a t  the  upper hybrid frequency a re  maintained indefinitely 

over t he  region of i n i t i a l  exci ta t ion and remain loca l  t o  t h a t  region. A rfioiodel 
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relevant t o  describing the  dispersive e f fec ts  of small, but f i n i t e ,  plesaa 

temperature i s  analysed i n  Section 111- (b). 

plasaa frequency are  no longer maintained f o r  a l l  t i n e  as i n  the cold plasm 

considerations of 11- (a). 

disturbances the  electron velocity phase mixes t o  zero; however, a low l e v e l  

of e l e c t r i c  f i e ld ,  balancing the  force c?ue t~ pressure variations,  remains 

i n  the  time-asymptotic limit. 

modified by the inclusion of a col l i s iona l  drag term I n  t h e  equation of motior. 

f o r  t h e  electron f lu id .  For arbi t rary,  lsrge-zmplitu3e, InitS.al disturbances 

(which do R o t  lead t o  maltistream flow), t h i s  diss ipat ion leads t o  a uniform, 

f ield-free,  stationary,  equilibrium. 

of t he  e l ec t ros t a t i c  problem corisidered in Section III have been t rea ted  

separately; it should be noted, however, that nothing r e s t r i c t s  t h e  e f fec ts  

of s t a t i c  magnetic f ie ld ,  dispersion and diss ipat ion fron being included i n  a 

s ingle  Lagrangian analysis. 

Coherent osc i l la t ions  a t  the  

It i s  shown t h a t  f o r  absolutely integrable i n i t i a l  

I n  Section 111-(c) the  a-nalysis of 11-(a) i s  

For c la r i ty ,  the  various generalizations 

In  Section I V  %ne development of transverse f i e l d s  is  considered i n  

de ta i l .  

depending on space and time i n  the wave equation. 

treaked. 

of na r rm ranges of the  transverse wave nunber. 

exp l i c i t l y  for a specif ic  e::ample. This non lhea r  i n s t a b i l i t y  i s  l b i t e d  by 

t'ne influence of t he  magnetic force which was fieglected i n  t h e  e l ec t ros t e t i c  

approximation of the preceding sections. The t o t a l  energy i n  the  transverse 

osc i l la t ions  is  bounded by the  t o t a l  amount of energy i n  the i n i t i a l  elec-tro- 

s t a t i c  and e l e c t x m g n e t i c  perturbations. 

The solutions of t he  e lec t ros ta t ic  proSlem enter as known coefficicnt,s 

Several l imit ing cases a re  

In  one of these, the solutions a r e  unstable f o r  an i n f i n i t e  nuii5er 

The growth-rate i s  calculased 



I n  Section V the  stationary solutions a re  studied. I n  the  electro- 

s t a t i c  approximtisn the cold plasma form 02 the  Bernstein-Greene-Kruskal 

waves i s  derived. 

uniqueness of the Lagrangian transformation is  shown t o  imply the  absence of 

trapped par t ic les .  

t alre the  form, i n  space, of the se stationary solutions. 

Tnese are  periodic i n  space and the  requirement of 

It is  a l so  ahown t h a t  the  osc i l la t ions  of Section I1 never 

Tne transverse f i e l d s  are  unstable i n  space, The growth i s  again 

l imited by the  magnetic force i n  the longitudinal problem, 

c l a s s  of solutions is  obtained for t h e  corqlete problem including a l l  magnetic 

force termF,andka specif ic  example i s  considered i n  detail.. 

Finally, an exact 

11. O"E-Dl2ENSIONAL ELECTRQSTATIC O S C I T J A T I O N S  JJ k COG3 F.L4SI\A 

(a) Solution i n  Lagracgian Variables 

Assuming t h a t  t he  ions form a fixed, uniform background, and t h s t  

t h e  2la sma i s  cold, the  one-dimensiosal Maxwell-fluid equations f o r  t he  e l e c t a  

density,  n(x,t) ,  e l ec t r i c  f i e ld ,  E(x,t) ,  and electron velocity,  v(x,t)  J read 

i n  t h e  e l ec t ros t a t i c  approximation: 

a a -- n + b t  (nv) = o , 
a E - k e n v  = 0 , 
. . 

d e 
$ v + v  a x " = - -  m E J  

and 

x = -4ae(n-n0) , (2.11) 

where n 

an i n i t i a l  value t o  Eq. (2.2)- 

(2.2), Relation (2.4) rernains true fo r  a l l  times i f  tl-ue i n i t b l l y .  

i s  the uniform ion density. Poisscnes equation may be thought of as 
0 

By v i r tue  of the  continuity equation and Eq. 
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Introducing the  Lagrangian vzriables, ( X ~ , T ) ,  as new independent 

variables, where 

T S t  > 

X I X -LV(Xo,T')dT' 4 

0 

Equations (2.1)-(2.3) may be rewrit ten i n  the  new variables as: 

(2.5 1 

(2.1) 
a 

E(:c ,*r) = 4rcen v(x ,T) , 0 0 0  
and 

where Poisson's equation has been used -91 obtaining Eq. (2i7). 

formati-or,, Eq. (2.5), has the  effect  of replacing the convective derivative,  

a/& + va/&, by the  loca l  time derivative, 8/37. 

(2.8), v(x ,T) has t h e  motim of a simple mrmonic osc i l la tor ,  o sc i l l a t ing  zt 

the  plasma frequency, w Le . ,  

The trans- 

Fron Equations (2.7) and 

0 

0' A 

2 a2 2 h n O e  
7 V ( X ~ , T ) + W ~  v(xo,Tj = 0; w - 
a7 0 -  m 

The general solutions t o  t h e  system (2 .6 ! - (2?8 )  a re  then s iq l -y ,  

v ( x ~ , T )  = V(X 0 ) c o s w o ~ ~ o ~ ~ x  0 )sinw 0 T 

and 

(2.9 1 

13 j 

(2.11) 

" b o , O )  
n(x0,7) = . ( 2 . ? 2 3  

1 V(xo)sinw T+ a X(xo)(l-cosw T )  

0 %  0 

The functional ckpeiidence of V a.nd X on x i s  re la ted  t o  the  i n l t i a l  vclcci ty  0 
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and e l ec t r i c  f i e l d  prof i les ,  v(x ,O) and E(:: 0), through 0 0' 

In  addition, X(x ) is re la ted  t o  the i n i t i a l  density, n(x ,O), through 

Poisson's equation at T = O ~  viz., 
0 0 

n(xo,o) 
-1 " 

a ax x(x,) = 
0 0 

(2.13) 

(2.lk} 

The coordinate transformat ion, Eq. 

T = t ,  

v(x,) 
x . z x  +-- 

w 
9 0 

The trencformation from Lagrangian 

(2.5), may now be wr i t ten  as, 

sim 3 T i. X(X 0 ) ( ~ - c o s w ~ T )  . (2 -  3 1 

t o  Eulerian cco rd in t e s ,  1. e. , the  deter-  

mination of x as a h i c t i o n  of x and t from Eq. (2.13)? requires an expl ic i t  

s 2 e c i f i c a t i m  of the  i n i t i a l  conditions, V(xo) and X(xO), arid i n  general 

en ta i l s  t he  algebraic solution t o  a transcendental equation. 

f r o 3  the  solutions, (2.10)- (2.12), hoxever, t h a t  coherent osc i l la t ions  at the  

plasma frequency, w a r e  maintained indefini te ly  over t he  region of i n i t i a l  

excitation. 

0 

It i s  eviderit 

09 

I n  addition, theye i s  a r e s t r i c t i o n  of the  class of ini.tial-Tralse 

problems which may be t rea ted  by the procedure j u s t  outiinea. 

t h a t  t he  density he non-negative in i t i a l l j j ,  requires only t h a t  

The conditicn 

n(xo,o) 2 0 . (2 .  IS) 

However, asking t h a t  t h e  solution for  the  density as given by Eq. (2.12) 

remain non-negative and f i n i t e  f o r  a l l  times gives the  more r e s t r i c t i v e  

condition 

n(x 0 ,o) > n0/2 (2.17; 

as wel l  as 
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(2.18) 

Relation (2.14) has been used i n  deriving inequ-alities (2.17) and (2.18). 

Consequently, a lower bound of n 2, not zero, i s  placed on the amplitude of 

the  i n i t i a l  density perturbation. Also,  the  r a t e  of change of V(x,) with xo 

i s  res t r ic ted .  

i n i t i a l  conditions, but ra ther  mathematical l imitat ions on the  Lagrangian 

formalism tha t  has been used. Mathematically if conditions (2,17) and/or 

(22.8) a re  violated f o r  some range(s') 

Lagrangian t o  Eul-erian coordinates, as  determined from Eq. (2.13), does not 

remain unique f o r  a l l  x and t. 

d 

These do not represent physical l imitat ions on t h e  cold 2lasma 

of xo, t he  transfcrmation from 

Pb.ysically, circumstances i n  which these 

conditions a re  violated for  scme range(s) of x lead t o  the  development of 
0 

1 
multistrean: flow within half t he  period of a plasma osci l la t ion.  

t ions  here, however, w i l l  be res t r ic ted  t o  init ial-I-alue problems for vhicb 

inequal i t ies  (2.17) and (2.18) are sat isf ied.  

Considera- 

(b) Example with Inversion t o  Eulerian Coordinates 

A s  a par t icu lar  non-trivial  examTle f o r  which the  inversion t o  

Eulerian coordinates may be carried out expl ic i t ly ,  l e t  us consider i n i t i a l  

conditions specified by a sinusoidal perturbation i n  density, 

n(xo,O) = no(l-tAcosl.xo), lAl < 1/2 , 
and zero velocity, 

v(x,) = 0 - 
The solutions (2.10)-(2.12) may t h e n  be wr i t ten  

W 

v ( x ~ , T )  = 2 Asinkx sinw T , k 0 0  

m A sinluc coswoT , E ( x ~ , T )  = - - w e o k  0 

j2 .X j 

(2.21) 

(2 .22)  



(2.23 1 

and 

0 
1-tAcosk.x 

n(xO,T) = n 0 l+Ac oskx0 ( l - ' q  

I n  addition, the  coordinate transformation, (2.15), becornes, 

T = t  , 
kx = kx0 + Q(T)sinkx0 , (2.24) 

where 

(2.25) 2 woT 
Q ( T )  = -in - 2 *  

Tbe condition t h a t  IAl < 1/2 ensures t h a t  156(~)1 < 1 md thiLt the solution, 

x (x , t ) ,  t o  Eq. (2.24) i s  single-valued, 0 

The solution may be determine2 numerically from Eq. (2.24) a-t 

d i f fe ren t  times, and the corresponding forms of n, v, and E, i n  Eulerian 

variables deduced from Expressions (2.21)-(2.23). 

the  density is  shown as a function of x i n  Fig. 1, at  successive quarter- 

periods of a plasma osci l la t ion.  

periods 2n/k and 2n/u0, respectively. 

regions i n  the  f i r s t  quarter period (w t = n / 2 ) .  

s t a t i c  forces a re  such as t o  cause a "bunching" of electrons arocnd 

For example, taking A = .45) 

The x and t dependences a re  periodic, with 

The dense regions f i l l  i n  the  ra re  

As time goes on, the electro- 
0 

k~ = (2n+l)n ; n = o,KL,J-~ , .  . . , ( 2 - 2 6 )  

reaching a maximum density of 5.5n The dense peaks f i l l  i n  the  0 0 

r a re  regions and the system reverts t o  i t s  i n i t i a l  sCate. The correspondirig 

velocity and e l ec t r i c - f i e ld  prof i les  (not presented here) exhibit  a steepening 

of the i n i t i a l  wave form sin&, withcut change i n  maximum amplitude. 

We re turn  t o  the problem of determining expl ic i t  ana ly t ica l  express- 

It i s  evident from Eq. (2.24) tha t  sinlr;rg 

at u t = n. 

ions f o r  n(x , t ) ,v (x , l ) ,  and E(xJt). 

and coskx are  periodic functions of x with period 2n/k. Consquently, t h e  
0 
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densi-y, e l ec t r i c  f i e  3 ,  arid ve1oci. t~ as  expressed i n  Eulerian coordinates, 

possess Fourier-series representations i n  x. F w  example, v and E each contain 

the fac tor  sinkx ( x 9 t ) ,  which may be wri t ten as,  
0 

where 

(2.28) 

The integrat ion may be carr ied aut using the r e l a t ion  between x and x pre- 

scribed by Eq. (2,2k), giving 

0 

where the Jn are  Bessel functions of the first kind. 

veloci ty  and e l ec t r i c  f i e l d  i n  Euierian variables a re  thus give11 by, 

The electron f l u i d  

n=l  
and 

2 w  
W 

E (x9 t )  = - - -  m 0 A I  (-11' -+ J ( n a ( t > > s i n r h  coswot . (2.31) e k  nQ t )  n 
n=l  

Prom Eqs. (2.4) and (2.31) we obtain fo r  the density, 

2n& -? 
n(x, t )  = no+ (-l,!nJn(n8(t j )cosdaccosU 0 t (2.32) 

n = l  

Expressions (2.30)- (2,32) a r e  thus exact solutions t o  the init ial-vall ie 

problem (2.19) and (2.20), and demonstrate quite exp l i c i t l y  the d is tor t ion  or" 

wave forms as manifested througa the generation of higher harmonic dependence 

on kx. In addition, the forin of Eqs, (2.30)-(2.32) is  useful t o  provide a 

convergent se r ies  representation of n, v and E i n  powers of tk  amplitude, A, 



of the  i n i t i a l  density perturbation. The 

the method of inversion used above i s  not 

0’ 
has a simple sinusoidal dependence on x 

i n i t i a l  density perturbation which i t s e l f  

reader w i l l  a l so  have noted t h a t  

l jmited t o  the  case i n  which n(x 

but may be generalized t o  t r e a t  any 

has a Fourier s e r i e s  representation 

0 )  0’ 

0’ i n  x 

I n  addition, we remifid the reader t ha t  the preceding analysis detzr-  

mines the  solution t o  the  Vlasov equation with self-consistent e l e c t r i c  f i e l d ,  

and i n i t i a l  value f o r  the d is t r ibu t ion  function of t he  form, 

f(::,v,O) = n,(l+Acoskx@(v), lAl < 1/2 (2.33) 

The solution f o r  a l l  times may be wr i t ten  i n  the  form 

f(x,v, t )  = n(x,t)s(v-v(x,t))  , (2.34) 

where n(x,t)  and v(x, t )  a r e  given by Eqs. (2.30) and (2.32). The plasma 

which is i n i t i a l l y  cold, remains cold for a l l  times i n  the  sense tha t  no 

random motion r e l a t ive  t o  v(::,t ) develops. 

f m  the  density, n(x,O), and mean veloci ty  v(x,O), t he  solut ion for  f ( x j v 2 t )  

i n  the  cold plasma probleril may s t i l l  be wr i t ten  i n  the  form given by Eq. 

(2.34), provided inequal i t ies  (2.17) and (2.18) are  sa t i s f i ed  and consequenz1.y 

niultistream flow does not develop. 

For more general i n i t i a l  condi t icm 

111. GENERALIZATIONS OF THE ELECTROSTATIC PROBLEM 

3 (a)  

The analysis of Section I1 may be generalized t o  describe t h e  non- 

Nonlinear zero-temperature Bernstej n Modes 

l inear  behavior of large-amplitude e l ec t ros t a t i c  osc i l la t ions  perpendicular 

t o  a unifozm, s t a t i c  magnetic f i e l d ,  B -0’ 
With uni t  Cartesian vectors (i1, 

A h  e ), we take B 

:r-direction (21). 
along $ 

The electron velocity, v (x , t ) ,  may be wr i t ten  as, 

and as before consider s p a t i a l  var ia t ions i n  the  Zj-3 -0 -3 ’ 
nd 
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cv v(x , t )  = V ( X , t ) S  -1 tV2(X,t)$+V 3 (x,t)$ -3 ' (3.1; 

aad the  e l ec t r i c  f i e l d ,  which i s  along the d i rec t ion  of s p a t i a l  var ia t ioas  i n  

the  e l ec t ros t a t i c  approximation, becomes, 

ry E(x,t) = E(xYt)zl (3.2) 

The plasma i s  again assumed co1.d. 

evolution of E(x,t)  and n ( x y t ) ,  remain unchanged, 

veloci ty  i n  the EL-direction now obeys 

Equations (2.1) and (2.2) describing the 

However, the  electron 

3V av e eBO 
-I- V 3:: = - - E - Q  0 v 2> Go = - rac 

and the  two addi t ional  degrees of motion sa t i s fy ,  

a ax v2 = "# , a x v 2 + v -  

and 

(3.4) 

(3.5 1 a ax v3 = 0 a 
xV3-I-,- 

Defining Lagrangian coor&Lnates following the  x-motion by Eq. (2.5), Eqs. 

(3.3)-(3.5) read i n  the  new variables, 

3 e - v(.* ,T) = - - E(x~,T)-c  v (x ,T) , 
&I *Lo m 0 2  0 (3.51 

and 

(3.8) a a7 V (2 :  7) = 0. 3' 0' 

The system of equations t o  be solved i n  kgrangian  variables now consis ts  of 

(2.6), (2.7) and (3.6)-(3,8). From Eqs. (2.7),  (3.6) and (3.7), v(x0,-r) i s  

seen t o  have the  motion of a simple harmonic osc i l la tor ,  o sc i l l a t ing  a t  the  

upper hybrid frequency, urn, i . e , ,  

(3.9) 
a2 2 2 2 2  

aT2 
= uo +Qo . - V ( X , , T ) + W ~ V ( X ~ , T )  = 0; w 



Consequently, the  only mod f icat ions 0: the  scdutions (2.10) and (2.12) for  

v(x ,T) and n(x ,T), and the coordinate transformatim (2.15), i s  that  w 

replaced by w 

mined from Eqs. (3.6)-(3.8), a r e  then given by 

is 
0 0 0 

The quant i t ies ,  v (x ,T), E(x T) and v (x ,T), as  deter- 
2 0  0’ 3 0  UH* 

and 
(3. ;i j 

v 3 0  (X > T I  = ~ 3 ( ” 0 > 0 )  > (3.12 1 
thus giving a complete description of the  problem i n  Lagrangian variables. 

The expl ic i t  behavior i n  Eulerian variables depends on the  de t a i l s  of the 

i n i t i a l  conditions chosen f o r  the prciblem. However, it is  clear  tha t  coherent 

osc i l la t ions  at the upper hybrid frequency are maintained f o r  a l l  time i n  the 

region of i n i t i a l  excitation. 

v2(xo,0) and n(x ,O), the  conditions that t h e  transformation from Lagrangian 0 
t o  ESilerian coordinates be unique, and that mul.tisi;ream flow does not develc?, 

In  terms of the i n i t i a l  conditions, V(xo) ,  

now bec one, 
2 2  

w -.a -- 0 0  
2 ’  

n(Xo’ 0 )  

0 2w0 
W 

and 

(3.13) 

2 
--- Go a v (x ,o) (3.2.) 

W 2 n  0 c?) UII 2 & , 2  0 
UII 

Conditions (3.13) and (3.11~) reduce t o  the inequal i t ies  (2.16) and (2.17) f a r  

db 3 0, as they should. 

(&2(xo,0)/&o = 0), conditions (3.13) and (3.14) become l e s s  and less res-  

t r i c t i v e  w i t h  increasing magnetic f i e l d  strength. 

If there i s  no i n i t i a l  shear i n  the  electron veloci ty  0 
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(b) Thermal EPZects 

Modifica-Lions due t o  dispersion resu l t ing  from f i n i t e  plasma tem- 

perature may be described by incl-uding the  force due t o  pressure variations 

i n  Eq. (2 ,3) ,  Le . ,  

The evdu t ion  of the electron pressure, P, as 

moments of t he  Vlasov eqiiation, i s  given by 

i n  circumstances where the  elec+,ron heat f l o w  

determined from the  apprcjpriate 

J (3.16 1 
4 may be neglected. This corres- 

ponds t o  the  approximation, (wo/k) >> vm, where l / k  is  the ( typ ica l )  length 

scale  of t he  disturbame being studied, and v 

In  Lagrangian variables defined by Eq. (2.5), Eqs. (2.6) and (2.7) remain 

i s  the  electron thermal speed. TH 

unchanged with inclusion of pressure effects ;  however, the  equation f o r  

v(x ,T) i s  now given by 0 

tihere 

Different ia t ing Eq. (3.17) with respect t o  T, we then have that . 

The solution t o  Eq. (3.19) i s  not mathematically t r ac t ab le  except trsthin sone 

addi t ional  approximation scheme; we discuss only one of these here, It should 

be noted tha t  In  an order of magnitude estimate the  thermal e f fec ts  EUY 



smaller by a fac tor  k2v2 /W re la t ive  t o  the &her terms i n  Eq. (3.19). For  TH 0 

purposes of a qual i ta t ive description, t he  model we adopt is one i n  which the  

f i n a l  term i n  Eq. (3.19) is  approximated by i t s  l inear ized version. 

- 
I n  

par t icu lar ,  for  the  case of an ( in i t i a l ly )  uniform pressure P 

becomes 

Eq. (3.19) 0' 

(3 .20)  

(3.21) 

S t r i c t l y  speaking, Eq. (3.20) i s  applicable only i n  a small amplitude ana lys i s  

However, it may be expected t o  give qua l i ta t ive ly  correct behavior even f o r  

moderately large ( i n i t i a l )  amplitudes provided steep s p a t i a l  grandients do 

not develop i n  the  cowse of time (as was the  case for  the i n i t i a l  conditions 

chosen for Fig. 1, Section 11). For i n i t i a l  values of the form of a s ingle  

monochromatic wave of wave number k, t he  analysis  goes through as i n  Section 

II-(b) ,  t he  essent ia l  nodification being a s l igh t  frequency s h i f t  from wo t o  

w0(1+3k $ ) . However, for i n i t i a l  conditions which a re  a5solutely inte-  

grable, the  long time solution t o  Eq. (3.20) has quite d i f fe ren t  behavior than 

2 2 1/2 

for  the case of a cold plasma. The analysis of Section I1 indicated t h a t  

coherent plasma osc i l la t ions  a r e  maintained indef in i te ly  i n  the  region of 

i n i t i a l  excitation, whereas, i n  re la t ion  t o  Eq, (3.20) the  inclusion of tharml  

e f f ec t s  leads t o  a d i spe r s im of the disturbance throughout the plasma. The 

solut ion t o  Eq. (3.20) may be wri t ten i n  terms of i t s  Fourier i n t eg ra l  rep- 

resentat ion as  

ik x v( xo T ) = j k 0 e  0 O[ V( ko ) c osw ( k0)7+w ( ko )X ( ko ) s inw ( ko ) 7 ] (3.22 ) 

where 



. .  

U ( k o )  = U (l.+31ro2AD 2 ) 1/2 
0 

The quantity, V(k ), i s  the Fourier transform of the  i n i t i a l  veloci ty  pertur- 

bation, v(x ,O), and X(lro) i s  related t o  the transform of the i n i t i a l  e l ec t r i c  

f i e l d  by 

0 

0 

2 e 
W (ko)X(k0) = - - m E(kOJO) (3 21.1 ) 

A s t ra ight  forward s ta t ionary phase analysis  02 Eq. (3,22) indicates t ha t  the 

osc i l la tory  terms phase mix t o  zero as ( l / ~ ” ~ )  for  large T . ~  For example, 

the  f irst  term decays as 

V(ko=O) x (osc i l la t ion  at frequency w 0 ), (3-3 1 

fo r  large T. 

magnitude and ( spa t i a l )  width, respectively, of the i n i t i a l  disturbance 

v(x ,O), we see tha t  v(x , T )  decays t o  a negligible l e v e l  compared t o  

time t ,  where 

Estimating V(ko=O) 2 ‘iTa where and A a re  the  charac te r i s t ic  

b a 
0 0 

(3- 26 1 w 0 t  >>A 2 2  /?> 

It should be noted that the time integrations over v(x 

transformation (2.5), and the  solution f o r  n(xO,T) as determined from Eq. 

(2 .6 ) ,  have non osc i l la tory  portions which d:, not phase mix t o  zeroI 

T) involved i n  the  0’ 

The time 

asymptotic hehavior i s  convenieatly wr i t ten  i n  terms of X[x ) and may be 

summarized as f o l l m J s :  

0 

v(x 0 ,T + m )  o , (3.27) 

and 

d X ( X 0 )  

3 ’  n(xO,T +a)) + n  -3n h 
O O D  ax, 

(3.28) 
U 

(3.29 i 

where x (x,~ +a) i s  determined from 0 



x = xo 4- x (xo )  . (3.36) 

That i s  t o  say, a low level,  stationary e l ec t r i c  f i e l d  remains, toge-ther with 

i t s  associated density prof i le .  

s t a t i c  force and the (long time) force due t o  pressure variations i n  thc: model 

t h a t  has been used. 

This represents a balance between electro- 

( c )  

The e f fec t  of dissipation i n  t h e  nonlinear analysis of S e c t i m  I1 

may be siinulated by including a co l l i s iona l  drzg term, -vv, on the right-hmd 

side of t h e  equation of motion, Eq. (2.3). 

(2.5)-(2.8) occurs fo r  Eq. (2.8) which now reads, 

Dissipation due t o  Collisional Dr?..g 

The only modification of t h e  s y s h  

a v ( x ~ , T )  = - e E ( x ~ , T ) - v v ( x ~ , T )  . 
The velocity i n  Lagrangian variables then s a t i s f i e s  

a2 a 2 2 V(Xo,T)+V F V‘X ‘ 0  ,T)SWo V ( X o , T )  = 0 , 
a7 

(3 .31)  

(39 32) 

where v has been assumed constant. 

t ions ,  with a damping fac tor  exp(- 

(Wo -v /4)’12, where w > v/2 by assumption. Consequently, v(x ,T) tends t o  

zero for large T, as does t h e  e l ec t r i c  f i e ld ,  E(:C~,T).  

may be shown t o  damp t o  the  value of t he  uniform backgrowid density, no. 

asyiiptotic time behavior cf course p e r s i s t s  i n  the  Eulerian frame, and i s  

valid for  any i n i t i a l  conditions tha t  do not lead t o  multistream floir. 

The motion thus exhibits damped osci l la-  

V a), and osc i l l a t ion  frequency 
2 2  

0 0 

Similarly, t h e  density 

This 

For 

t he  case, 

(3.33 0 ’  
v << w 

t h i s  r e s t r i c t ion  is s t i l l  given (approximately) by inequal i t ies  (2.17) ar,d 

(2.18). 
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IV. ELECYRCMAGIJET IC OSC ILIA Y'IONS 

The complete se t  of cold plasma equat ims i n  s i tuat ions where a l l  

gradients a r e  i n  the x-direction can be conveniently s p l i t  up in to  three 

subsets . 
Subset A. 

X 
$E 

= -4rce(n-n ) , 
0 

x 3E 
= 4genv x '  

e 1 1 
m Y =  c Z Y  

av 
X 

av 
- - $ + v ~ ~ = - - ( E ~ + ; v B - - V B )  

(4.1) 

(4.. 3)  

(4.h.) 

This subset describes the  longitudinal o s c i l l a t i m s  t rea ted  i n  the  preceding 

sections if the  contributions t o  the Lorentz force i n  Eq. (4..4) due t o  se l f -  

consistent magnetic f i e l d  a re  neglected. This neglect i s  apparently j u s t i f i e d  

i f  t he  f l u i d  ve loc i t ies  a re  muck; smaller than the  velocity of l i gh t  and if  the 

f i e l d s  B ,B a r i s ing  frgm electromagnetic osc i l la t ions  a re  not mwh la rger  

than the e l ec t ros t a t i c  f i e l d  Ex. 
Y Z  

Subset B. 

2 
-8z = -c A: 

This se t  describes transverse 

(4.5 1 - x i '  

, (4.6 1 

(4.7) 

aBz 

e 1 - -  m (Ey- E VxBz) 

osci l la t ions,  We have put B (sat isfying X 

a~ / a x  = 0) equal t o  zero. 
X 
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Subset C. 

e avZ = - - (EZ+ 2 v B ) . 
x + v x a o c  m X Y  

(4. l o )  

The system (4,8)-(4,10) describes the  addi t ional  degree of freedon f o r  t rans-  

verse osc i l la t ions  and i s  ident ica l  t o  subset 13 with  the  interchange of y a d  

z ,  and the  replacement of c by -c. 

We now t r e a t  t h e  case without external  magnetic f i e l d ,  and i n  

addi t ion neglect the magnetic force i n  Eq, (4,4), 

a r e  then known from Sec t ion IL  Consequently, the  qEantit ies n(x, t )  and 

The solutions of subset A 

v,(x,t) enter the  equations (4.5)-(4,10) as known fwc t ions ,  We solve the  

equations of subset E keeping i n  mind that the solutions of Eqs. (4.8)-(4.lC) 

may be wri t ten down by analogy, and introduce the vector po ten t ia l  A 

t o  the  f i e l d s  by 

r e l a t ed  
Y 

This s a t i s f i e s  Eq, (4,6), and (4.7) reduces t o  

expressing conservation of canmical  nicmenturn i n  a reference system m9vir.g 

with vx. Equation (4.5) becmes 

F r m  (4.12) we obtain v i n  terms of A Y Y. 
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(4.14) 

where x i s  the s o h t i o n  of 0 

X, = X- r" ~-,(x,,,t ')dt '  
" J o  

Subst i tut ing (4.14) in to  (4.13) 

A V  

it follows t ha t  

with 3 

and 

(IC. 16) 

The function N(x,t) is  periodic i n  t. Therefore Eq. (4.16) suggests the 

poss ib i l i t y  of parametric resonance. I n  Section X I  expressions f o r  N(::,t) an? 

vx(x,t) were obtained Zor the case of a n  i n i t i a l l y  sinusoidal density pertur- 

bation and vx(x,t=O) = 0. 

pmper t ies  of Eq. (4.16) e q l i c i t l y .  However, generalizations t o  other ini'cj-al 

We use these r e su l t s  i n  order t o  investigate the 

conditions f o r  the  longitudinal problem a r e  straightforward. 

We denote the character is t ic  wave numbers of the  longitudinal and 

transverse o s c i l l a t i m s  by k and k respsctively and the  chara- te r i s t ic  f r e -  

quency of t he  transverse osci l la t ions by 0. Since N{x,t) ar,d F ( x , t )  

i n  Eq. (4.16) vary i n  space and time with charac te r i s t ic  wave nuniber ko and. 

0 frequency w considerations w i l l  be r e s t r i c t ed  t o  solutions,A wi th  k 2 Is 

and w ,> w 0' 

0 

0' y' 
We discuss four different  ordering schemes. 

1) w ry Wo, kc >> w 
I, 

Eq. (4.16) reduces t o  

( :- * 18 :) 
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describing the  d i r ec t  generation of the magnetic f i e l d  BZ = &y/& by t h e  

e l e c t r i c  current density, cF(x,t ). 

0 2) - k c > > @  

Eq. (4.16) reduces t o  

a2A a2A 
--$ - -$ --$ = F(x , t )  . 

k c &  
The solutions of the  homogeneous par t  of t he  equation a r e  plane electromagnetic 

waves. The inhomogeneous equation (4.. 19) i s  eas i ly  solved by transfwination 

t o  the  new variables,  :c+ = xkct. 

of the i n i t i a l  values of t he  f i e lds  i s  given by 

The general solution of Eq. (4.19) i n  terms - 

Ey = 5 [E (x-ct ,t=O)+E (x+ct ,t=O)+BZ(x-ct ,t=O) 
Y Y 

BZ = j$ [BZ(X-ct,t=O)+BZ(x+ct ,t=O)+E (::-ct,t=O) 
Y 

, (4.20) 1 x' -x 1) 
C 

- E (x+ct,t=O)]+ 2 1 d~ 0 sgn(x-2:' )F (x' , t - 
Y 

where the  appearance of retardation is  clear. The difference from the  analo- 

gous three-dimensional expressions for t he  par t icu lar  solution of t h e  inhorn- 

geneous wave equation should be noted. Equatim (4.20) describes the  gen?r&.- 

t i o n  of high frequency short  wavelength transverse f ie lds .  

3)  k >> ko, - CL.I kc 0 -- 
This l imit ing case has the e f f ec t  of introducing two space scales  

i n  Eq. (4.16). Reserving x f o r  the fast var ia t ions i n  space, and in t ro-  

ducing 5 = k x f o r  the  slow variations,  we see t h a t  a/& i s  replaced by 

a/& + ko a/&. 
0 

I n  lowest order, Eq. (4.16) then beccmes 
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(4.21) 

We start by studying the  solutions, A H of the honogeneous par t  of Eq. (4.21). 
Y ’  

Introducing the  Fourier transform, 

it follows t ha t ,  

(L.22) 

Since N(S,t) i s  periodic i n  t t h i s  i s  a H i l l  equation. 

Equation 623) and make use of well known re su l t s  of the theory of Mzithiea End 

H i l l  equations,697 we write N(6,t) as a double Fourier series for  the  case of 

I n  order t o  discuss 

an i n i t i a l l y  sinusoidal density perturbation with vx(x,t=O) = 0, 

example discussed i n  d e t a i l  i n  Section XI), i.ee , 
(the 

(4.24) 
j = -w  m=-m 

Then with 6 - k x and Eqs. (2.23)-(2.25) we f ind  0 -  0 0  where T = wet. 

. r2Jt r 2 x  L dkO( 1+AcosE0)exp[ i ,4T- im~o-  imA(l-cosT)sin{ 1 . 0 

Using standard trigonometric ident i t ies  and ser ies  expansions with Bessel 

functions the  integrals  can be evaluated with the r e su l t  
so0 

q=-w 

The following properties a re  readi ly  established: 
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Theref ore 

with 

and m=l 
W 
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(4.26) 

(4.27) 

(4.28) 
m = l  

If A << 1we  may expand i n  powers of A and obtain a f t e r  considerable algebra 

2 1 1 
2 2 N = l + A C O S ~ C O S T + A  COS~E[ -  -COST+ - C O S ~ T ]  

(4.29 1 + cos3e(- 8 + $ COST- 8 9 cos2T+ - 9 cos3T]]+O(A 4 ) e 

32 
Equation (4.23) may be wr i t ten  i n  the  standard form 6?7 

where T = T/2. 

A we get from Eq. (4.29) 

The 82e follow immediately from Eqs. (4.25)-(4.28). For sm.12 

eo = 4(1+ 37 + [A3cos(+4A 2 cos2E-99 3 cos3(]+O(A 4 ) 

0 

4 ( - c o s ~ + ~ c o s ~ ~ ) + O ( A  ) 

4 
'6 = 1 

(4.31) 88 = O(A 1 . 
It i s  wel l  that the  solutions of the H i l l  equation, Eq. (4.30), have 

the  f o r m  
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*k = a e:cp(Id@(d+b exP(-pdpl(-T) , (4.32 

where a and b a r e  integrat ion constants, and @(T) i s  a periodic function. 

Depending on the  coeff ic ients  8 

s t a b i l i t y ,  or  of the  form, ri4-p , where r i s  an integer or zero and p 

r ea l ,  implying ins tab i l i ty .  

, p i s  e i the r  purely imaginary implying 24 

R R 
i s  

It i s  the  l a t t e r  p o s s i b i l i t y  which i s  of special  

i n t e re s t  here. 

The q m n t i t y  p i s  given by 6 

c o s b p  = 1-25(o)sin2 w% , 
where S(0)  i s  the  i n f i n i t e  determinant, 

e2 
1 8 p  

'80-4 '2 1 I 
O4 - e2 

s(0) = I *  8 0 

' 6  e, 

-F  e,-16 

. -  eo-4 

' 8  ' 6  

. . 
It has been assumed that.0 f 4r", r = 0,+1 etc. 0 

'4 80-16 
e2 

eo-4 
- 

1 

e2 
e -4 

e4 
F p  

- 
0 

. 
Q 

' 6  e,-i6 

- e2 

- e -4 0 

1 

e2 z p  . 

'8 - e -16 

' 6  
eo-4 

e *  

0 

- e4 

e2 

0 

- e -4 0 

1 .  
. 

(4.33 1 

(4.34 1 

2 If a l l  terms of O(A ) are neglected, then Eq. (4.30) is  a Mathieu 

equation with s t a b i l i t y  as given i n  Fig. 2. We see from Eq. (k.31) 

t h a t  8 > 4 and the  first unstable region i s  near 8 
0 0 

consider Eq. (4.30) with 

= 9. Therefore we 
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In  t h i s  case we use the r e s u l t s  of Ref. 6, page 17, describing the boundary 

curves of the  s table  r e g i m s  in  Fig. 2 i n  order t o  f ind  the region of insta- 

b i l i t y .  Unstable waves develop f o r  k i n  the range 

1 z+x 
The width of 

follows from 

2 1 3  3 2 2  3 k2c2 5 A cos 5-  2 A3/cosEI < 7 < + 2 A2cos I;+ - A  IcosEI 
32 

0 (4*36 1 w 32 

t h i s  range i s  clear ly ,  of order A 3 . The maximal growth r a t e  

Ref. 6, page 101, and i s  given by 

2 2  The g r w t h  r a t e  takes t h i s  maximal value when k c /w i s  approximately i n  0 
t he  middle of t he  in t e rva l  (4.36). 

u n t i l  it vanishes at the  boundaries of t he  interval.  

may be obtained near 8 

On both s ides  of t h e  mid6le pR decreases 

I n  a similar way resulks 

= 16,25. . with grar th  r a t e s  and unstable k ranges 0 
of order A 4 5  ,A etc. 

If A i s  not small (but s t i l l  A < 1/2) it can be shown t h a t  the 

u s t a b l e  regions and the grawth ra tes  a r e  much larger.  This i s  suggested bg 

Fig. 2. This s t a b i l i t y  diagram, however, i s  no % Iohger val id  because 

J > 1 w i l l  a l s o  play a role. It should a l s o  be real ized t h a t  since 

v - mdko - &k/k the present non-relat ivis t ic  treatment is  anly j u s t i f i e d  

e 2 P  

X ,O 
if 

kg A < <  -<< 1 . k (4.38) 

Therefore la rger  values of Atogether  with k << k require a r e l a t i v i s t i c  

treatment or r e s t r i c t i o n  t o  spa t ia l  regions for k x - nn (n i s  an integex) 

since there  v is  small according t o  Eq. (2.21). It must a l s o  be recognized 

that Eq. (4.23) breaks down a f t e r  a suf f ic ien t ly  long time. 

0 

0 

X 

This can be szen 

as follcrws. If we take a derivative with respect t o  x i n  Eq. (4.32), a f~ .cSw 
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r .  ) .  

t appears s i n  D p depends on 1s x (see @q. (b.3'7)). Since such terms were 0 
neglected i n  writ ing Eg. (4,123) we have the requirement 

w +A3k << k . (4.39 1 0 0  
Consequently the  expl ic i t  calculations a re  only val id  f o r  a r e s t r i c t ed  time; 

however, considerable growth i s  possible i n  Eq. (4.32) since the  g r m t h  r a t e  

i s  of order w A' and ko << k. 

generalized W.K.B.-method and it is  therefore not t o  be expected t h a t  the  

secu la r i t i e s  might be avoided by means of a 
0 

r e s t r i c t i o n  (4.39) represents a serious l imi ta t ion  of the theory. 

Questions may be ra i sed  r ega rdhg  the  energy source of t h e  insta-  

It is  clear  f rm t o t a l  conservation of energy tha t  the  amount of bil . i ty.  

energy i n  the unstable transverse osc i l la t ions  can never exceed the  energy 

content of the  i n i t i a l  longitudinal and transverse perturbations. It i s  of 

some in t e re s t  t o  examine the energy balance f o r  the  longitudinal and trans- 

verse osc i l la t ions  separately. It can be eas i ly  sham that 
Q 

where 

(b.40) 

(4.42 

The r igh t  hand side of Eq. (4.40) i s  due t o  the  magnetic force -e/mc v B 

Eq. (4.4) which was neglected i n  preceding calculations. 

Eq. (h.bl), however, was - not neglected i n  the treatment of the  transverse 

i n  
Y =  

The quantity IC i n  

osci l la t ions.  

longitudinal i n to  the transverse osc i l la t ions  possible. 

with E + B t  << E t  then u l t i m t e l y  E + B t  i s  of the  same order o f  mgnitudn 

It is  t h i s  quantity which makes the  t ransfer  of energy f rom t h e  

If we s tar t  i n i t i a l l y  

2 2 
Y Y 



2 as Ex . C npar in  the magnetic force wi th  the e l ec t ros t a t i c  force i n  Eq. 

(4.4) it i s  eas i ly  seen t h a t  

when the  energy of t he  transverse osc i l la t ions  has reached i t s  ultimate level., 

Nevertheless it i s  t h i s  magnetic force that i s  responsible f o r  turning off 

t he  ins tab i l i ty .  

Thus far, only the solution t o  the  homogenema psr% of Eq. (4.21) 

has been discussed. 

c a l  momentum i n  the y-direction as i s  seen from Eq. (4.17). In  general, if 

F(x,O) f 0, we must add a par t icular  solut ion of the  ccanplete inhomogeneous 

equation, 

This corresponds t o  i n i t i a l  conditions with zero canoni- 

For instance instead of Eq. (4.23) we have 

(4.44) 

where Ak(E,t) and Fk(5,t)  a r e  the Fourier transforms of A(x,E,t) and F(x,E,t) 

respectively. A solution of Eq. (4.44) i s  

where xk(E,t) i s  a solution of the homogeneous par t  of Eq. (4.44). 

of n",(E,t') i n  Eq. (4,115) can be aecbskodated bysuikbhedmice B integrat ion 

contour i n  the  complex t ' -plane. 

The zeros 

4 )  

I n  t h i s  case Eq. (4.16) reduces t o  

k - ko, kc << Q Q 

(4.46) 
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and we recover Eq. (h.30) and Eq. (4.31) where now eo = 4+0(A 2 ). I n s t a b i l i t y  

seems possible again since 8,=4 i s  a point where an unstable region extends 

t o  the  8 -alsis i n  the s t a b i l i t y  diagram, Fig. 2. 

reader that the width of t he  unstable region is of order A and the  neglect 

of k c /wd i n  eo as given by Eq. (4.31) i s  on ly  correct i f  kc < w& There- 

fore  wi th  k - ko we f ind  i n  general t h a t  vx - a&/k > c which i s  incms i s t en t -  

Consequently, the  unstable solution i s  possible only f o r  kox ,., m (n being an 

in teger )  where vx i s  small according t o  Eq. (2.21). 

However, we remind the 0 
2 

2 2  

0 

V, STATIONARY SOLUTIOITS 

We nuw investigate time-independent solutions of the  Eqs. (h.1)- 

(4.7). 

Eqs. (4.5)-(4.7). 

cold plasma version of t he  Bernstein-Greene-Kruskal (B.G.K. ) 

electromagnetic problem using t h e  e l ec t ros t a t i c  r e su l t s ,  and a special  case 

of the complete problem including the  magnetic Torce i n  Eq. (4.4). 

Again solutions of Eqs. (4.8)-(4.10) a r e  qui te  analogous t o  those of 

We w i l l  t r e a t  the purely e l ec t ros t a t i c  problem leading t o  

the 

(a )  Elec t ros ta t ic  Problem 

Allawing for a constant velocity,  

the relevant equations a re  

nvx = n v 0 0 '  

- = -ke(n-n0)  

We introduce the  Lagrangian coordinate q by 

dx 

v of t h e  uniform background, 0, 

(5.1) 

(5.2) 

. 613)  

3 (5.4) 

implying 
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The equation for vx becomes 

Consequently 

v = vo-tacos~ .r)+bsinw 7 , 
X 0 0 

n v  
> 

0 0  n = -  
vx 

m Ex = - - 
e o  0 0 (bcosw 9-asinw q )  , 

where a and b a r e  integrat ion constants. 

The transformation given by Eq, (5.h-), becomes 

1 x = voq+ - Easinwg'l+b[l-coswov)) . 
OO 

(5.9) 

If we choose the  or igin such that E =O at x=q=O, then b=O and Eq, (5.9) i s  thd 

stme as the second l i n e  of Eq. (2.24) if we replace x by voq, k by wdvo and 

$2 by a/vo. 

X 

0 
We can then use t h e  inversion formulae, Eqs. (2.27) and (2.29), 

and obtain fo r  Ex, 

nw x 
q x )  = w 2v 1 (-11" Jn (:)sin - 0 - . 

vO 0 0  n 
n=l 

Substi tuting t h i s  i n to  Eq, (5.3) it follows that 
ca 

Writ ing 

vx =L ancosnx' , 
n=O 

where 
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7' = 00'1 ' "OX x' = - 
0 v '  

we f ind  b f t e r  s3me algebra 
- c o  

3 

CF 
v '  cos - 
0 

(5.12) 

dhere Jn' i s  the derivative of J with respect t o  i t s  argument. n 
Some interest ing resu l t s  a r e  implied by the  above analysis. I n  

Section I1 the calculations were only val id  f o r  a < 1. 

val id i ty  of the present analysis requires a < v 

(5.6) and b=O that vx nowhere changes sign. 

trapped, 

of t he  Lagrangian transformation, excludes trapped electrons from the fomaLism 

This i s  nut surprising since the  coexistence of trapped and f r ee  electrons 

cannot be described by the one-stream cold plasma model. 

I n  a sinilar way the 

It then follows from Eq, 

Consequently, no electrons a re  

which i s  necessary t o  ensure the uniqueness 

0' 

The condition a < v 0' 

It should also be noted that the solutions (3.6), (5.7) and (3.8) 

canncri; be obtained by 'freezing" the solutions of the  time-dependent problem 

i n  Section 11, Le.,  a t  n3 instant of time do the  solutions i n  Section 11, 

prDperly generalized t o  include the background f lw velocity, take the  spatial 

form of a cold B.G.K. wave. Furthermore, it i s  remarkable that i n  a c d d  

piasma only periodic B.G.K. waves of a very special  form, given i n  Eqs. (5.10), 

(5.11) and (5*12), a re  possible. This i s  i n  sharp contradistinction wi th  the  
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a s i tua t ion  i n  a hot plasma, 

In addition, it should be noted that  the  spa t i a l ly  averaged electron velocity 

and is due t o  the absence of trapped par t ic les .  

does not equal vo but ra ther  vo+ az/2v as i S  seen from Eq. (5.12). 0 
(b) Electrmagnetic Problem 

Having obtained the solutions t o  the e l ec t ros t a t i c  problem we now 

consider the  s ta t ionary form of the equations ( b . 3 ) -  (4.7) t r e a t i w .  n(x) and 

vx(x) as known quant i t ies  through Eqs. (5.11) and (5.12). It follows that 

t 15.13) -- dEY & = o  

where A 

e v = - A 

i s  t h e  y-component of the vector potentia3.. Choosing E =O and 
Y Y 

i n  order t o  s a t i s f y  Eqs, (5.13) and (5.1b-), we obtain (n=noN) 
Y ac Y 

2 d2A W 

3 - -0- N ( ~ ) A  =o , 
ax2 C 2 Y 

i. e., a H i l l  equation i n  space. In general the  solutions of Eq. (5.16) a r e  

growing i n  space because of the minus sign. Fsr special  values of t he  

Fourier coeff ic ients  o f  N(x), however, the  sDlutions can be “w>able”; see 

Fig. 2 i n  Section IV. It may be expected, as i n  Section I V  tkt growing 

solutions a r e  l imited by the  magnetic force which was neglected i n  the  longi- 

tud ina l  par t  of the  problem. 

(c )  

If we consider the background t o  be a t  r e s t ,  i.e., vo=O, but r e t a i n  

Special Case of the Complete Problem 

all magnetic force terms, it fo l lms  .from Eqs, (4.1)-(4,7) that  

v = O ,  E = O ,  
X Y 

(5.17) 
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and 

-he(n-n  ) , mx - =  
dx 0 

E x + ; V B  = 0 ,  Y Z  

4xenv = c - 

1 

dBZ 
Y d x '  

Eqs. (5.18)-(5.20) permit a non-trivial  c l a s s  of solutions. 

f'unctions n(x), E (x)> v (x) or B (x) i s  prescribed the  others can be calcu- 

lated. 

If one of the  

X Y z 
As an example we consider 

n = no(l+Acoskx) , (5.21) 

which gives 

4nen& 
sinluc , Ex = - -- k 

and 

, 
8x2e2ntA 

k2 
= [Bt- (4coskx+Acos2lr;:) BZ (5.231 

where B d  enters  as an integration constant that must obviously s a t i s f y  tke  

inequality 

Finally, we f ind  f o r  v 
Y 

h e n &  
k v = c  

Y 

I n  order t o  j u s t i f y  the 

requirement 

&2 2 2 e no A 

k2 
2 - &+A) 

(5.24) 
sinkx 

2 2  2 11lZ * 

[Bt- (4 c osla+Ac os2kx ) J 

non-relat ivis t ic  treatment there  is the addi t ional  
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FIGURF: CAPTIONS 

Fig. 1. Density p ro f i l e s  with A = .45. 

Fig. 2. S t a b i l i t y  diagram for  Mathieu Equation according t o  Ref. 6 and 7. 

Stable regi9ns are shaded. 
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